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Executive Summary
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Memory-bound behavior in single-machine in-memory graph processing

Data-aware characterization of the core and the cache hierarchy to 

understand the memory-bound behavior

Architecture design and evaluation of DROPLET, a data-aware and 

decoupled prefetcher for graphs to solve the memory access bottleneck 
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Section I 
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• Application domains 

• Single-machine in-memory graph processing 

• Memory access bottleneck

Memory-bound behavior in single-machine in-memory graph processing
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Graph 

Processing

Transportation

Financial 

money flows
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Interest in Graph Processing
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Single-Machine In-Memory Graph Processing
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Many common-case industry and academic graphs fit in RAM of 

a high-end server

Big-memory machines

Ex: 1) Intel Xeon with 1.5TB RAM

2) HPE’s MACHINE
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Bottleneck…
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Cycle stack of PageRank on Orkut dataset 

45% of cycles are DRAM-bound stall cycles

Only 15% of cycles are fully utilized by core without stalling 

Data collected using Sniper on a quad-core architecture 



Scalable and Energy-efficient Architecture Lab (SEAL)

Section II 
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• Novelty

• Background 

• Characterization setup 

• Profiling observations 

• Summary

Data-aware characterization of the core and the cache hierarchy to 

understand the memory-bound behavior
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Characterization of Core and Cache Hierarchy 
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Novelty compared to prior characterization [IISWC ‘15, MASCOTS ‘16, SC ’15]: 

data-aware profiling: 

guidelines to managing 

different data types  

simulated environment: 

explicit exploration of 

performance sensitivity 

of hardware design 

parameters  
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Background: Data Type Terminology
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Compressed Sparse Row (CSR) data layout 

• Structure data -> neighbor ID array 

• Property data ->  vertex data array 

• Intermediate data -> any other data 
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Experimental Setup 
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Algorithms (GAP Benchmark)

• Connected Components (CC) 

• PageRank (PR)

• Betweenness Centrality (BC)

• Breadth First Search (BFS)

• Single Source Shortest Path (SSSP)

Hardware Characteristics on SniperSIM

• 4-core, 128-entry ROB, 2.66GHz

• Private L1D/I caches, 32KB, 8-way SA, 4 cycles 

• Private L2 cache, 256KB, 8-way SA, 8 cycles 

• Shared L3, 8MB, 16-way SA, 30 cycles

• DDR3 DRAM, access latency = 45 ns

Datasets (|V|= # vertices, |E| = # edges)

• Kron 16.8M |V|       260M |E|

• Urand 8.4M |V|       134M |E|

• Orkut                 3M |V|       117M |E|

• LiveJournal     4.8M |V|      68.5M |E|

• Road            23.9M |V|       57.7M |E|
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Profiling Overview 

• Can we achieve higher Memory-Level Parallelism (MLP)?

- If not, what factor is restricting MLP? 

• What is the relative performance sensitivity of different cache 

levels? 

• How do different data types use the memory hierarchy? 

12
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Instruction Window size does not hinder MLP
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We increase IW size to 4X......

Average memory BW utilization 

increases by only 2.7%

Average speedup is 

only 1.44%
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Load-load dependency hinders MLP
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43.2% of loads are part of a dependency 

chain with chain length of 2.5

For every load in ROB, we track its dependency backward until we find an 

older load….

LD[R4] -> R2 

ADD R1, R3 -> R4 

LD[R5] -> R3 

(consumer load) 

(producer load) 
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Property data is consumer in load-load dependency
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• Property data is mostly a 

consumer (54%) rather 

than a producer (6%)

• Structure data is mostly a 

producer (41%) rather 

than a consumer (6%)

We break down producer and consumer loads by application data type…
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Private L2 cache shows negligible performance 

sensitivity
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We vary L2 cache configurations…

An architecture without private L2 caches is just as fine for graph processing 
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Shared LLC shows higher performance sensitivity
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We vary shared LLC capacities…

17.4% performance 

improvement for 4X 

increase in LLC capacity
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Heterogeneous Reuse Distances 
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Structure data has the largest reuse 

distance: serviced by L1 and DRAM  

Property data has a larger reuse 

distance than that serviced by L2 cache   

Intermediate data accesses are mostly 

on-chip cache hits

We break down memory hierarchy usage by application data type….
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To Summarize….
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Memory-bound behavior caused by: 

• Heterogeneous reuse distances of different data types leading to 

intensive DRAM accesses for structure and property data 

• Low MLP due to load-load dependency chains, limiting the possibility 

of overlapping DRAM accesses 
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Section III 
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• DROPLET introduction 

• DROPLET overview

• L2 structure streamer 

• Property prefetcher 

• Evaluation

Architecture design and evaluation of DROPLET, a data-aware and 

decoupled prefetcher for graphs to solve the memory access bottleneck 
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DROPLET: Data-AwaRe DecOuPLed PrEfeTcher
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Data-aware: 

prefetches data 

types 

according to 

reuse 

distances

Decoupled: 

overcomes 

serialization 

from load-load 

dependency
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DROPLET Overview
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DROPLET Overview
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• Copy of prefetched structure 

cacheline triggers property 

prefetcher in MC. 

• Property prefetcher uses 

information in structure 

cacheline to calculate 

property prefetch addresses. 
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DROPLET Overview

24

Private L2 cache

Shared Inclusive 

LLC

Data-aware 

Property 

Prefetcher

Data-aware 
Structure 
Streamer

Coherence
engine

struct_req

struct_req

struct_req

struct_dat

struct_dat

struct_dat

prop_dat

prop_dat

prop_dat

prop_trigger

prop_req
prop_req

p
ro

p
_
re

q

s
tr

u
c
t_

re
q

Memory 

Controller

1

2

struct_trigger

• Property prefetch address is 

used to check the coherence 

engine for on-chip presence 

of data 

• If not on-chip, line up 

request in MC 

• If on-chip, query LLC for 

property data
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DROPLET Overview
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L2 Structure Streamer 
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Property Prefetcher 
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Property Prefetcher 
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Property Prefetcher 
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Property Prefetcher 
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Property Prefetcher 
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Help From Application Layer
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Specialized malloc passes these information from application to hardware

More in paper!
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Experiments
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DROPLET is compared to:

• No-prefetch baseline

• Conventional L2 stream prefetcher 

• Variable Length Delta Prefetcher (VLDP) at L2

• Global History Buffer (GHB) at L2

• streamMPP1: conventional L2 streamer + property prefetcher in MC 

• monoDROPLETL1: monolithic data-aware streamer and property 

prefetcher at L1. Similar to state-of-the-art graph prefetcher (ICS ’16*).

* S. Ainsworth and T. M. Jones, “Graph prefetching Using Data Structure Knowledge,” ICS 2016



Scalable and Energy-efficient Architecture Lab (SEAL)

Data-Aware + Decoupled = High Performance
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DROPLET achieves performance 

improvements of:

• 19%-102% over a no-prefetch baseline

• 9%-74% over a stream prefetcher 

• 14%-74% over VLDP

• 19%-115% over GHB

• 4%-12% over state-of-the art graph 

prefetcher 
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More experiments in paper!
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Conclusions
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• Memory access is the primary bottleneck in single-machine in-memory 

graph processing.

• Memory access bottleneck arises from:

1) Heterogeneous reuse distances of different data types, leading

to DRAM accesses for graph structure and property data.

2) Load-load dependency restricts MLP.

• DROPLET, a data-aware and decoupled prefetcher, effectively solves 

memory access bottleneck. 
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Backup Slides 
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Property data benefits from LLC capacity
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With increasing LLC capacity, most reduction in DRAM accesses comes 

from property data 
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Property Prefetcher 
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Hardware Overhead 
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• Extra bits in TLB: 1.56% storage overhead in paging structure 

• Extra bits in L2 request queue: 1.54% storage overhead 

• Property prefetcher in MC: 0.0348% area overhead compared to entire chip


