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Executive Summary
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Streaming graph analytics and its unique challenges

SAGA-Bench: an open-source benchmark for streaming graphs  

Software-level characterization of different data structures and compute models 

Architecture-level characterization of graph update and graph compute phases



Scalable and Energy-efficient Architecture Lab (SEAL)

Section I 

3

Streaming graph analytics and its unique challenges
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Application Domains of Streaming Graphs 
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Financial fraud detection Recommender systems Social Network Analysis
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Streaming Graph Analytics Overview
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Difference Between Static and Streaming Graphs 
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STATIC STREAMING

❑ Build graph once, compute again 

and again 

❑ Optimization goal: execution time 

of compute phase 

❑ Graph update is a fixed one-time 

overhead 

❑ Repeated update and compute on 

batches of incoming edges

❑Optimization goal: real-timeliness, 

i.e., low batch processing latency

❑ Graph update lies on the critical 

path
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Shortcomings of Prior Software Work
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Aspen (PLDI 2019)

Stinger (HPEC 2012)

Kineograph (EuroSys 2012)

GraphOne (USENIX FAST 2019)

KickStarter (ASPLOS 2017)

Degree-Aware Hashing (IPDPSW 2016)

GraphTinker (IPDPS 2019)

GraPU (SoCC 2018)

Multiple stand-alone streaming 

graph systems but lack of 

systematic study of the software 

techniques (data structures and 

compute models) proposed 

across these systems 
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Shortcomings of Prior Architecture Work
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Multiple papers on static graph 

computation but streaming graphs remain 

unexplored at architecture level due to:

• Immature software techniques

• Lack of open-source benchmarks

Graphicionado (MICRO 2016)

GraphP (HPCA 2018)

HATS (MICRO 2018)

Tesseract (ISCA 2015)

PHI (MICRO 2019)

Droplet (HPCA 2019)

GraphQ (MICRO 2019)
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This Work
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Creates SAGA-Bench, an open-source benchmark, and 

performs systematic software and hardware 

characterization of streaming graph analytics workloads 
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Section II 
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SAGA-Bench: an open-source benchmark for streaming graphs  
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SAGA-Bench Overview
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Benchmark in C++ which puts together different data structures and 

compute models for streaming graph analytics on the same platform

for systematic characterization  

GitHub repo: https://github.com/abasak24/SAGA-Bench

https://github.com/abasak24/SAGA-Bench
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Scope of SAGA-Bench
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Software Studies: Common platform for performance analysis of software 

techniques such as different data structures and compute models

Architecture-level studies:  Open source tool for studying architecture-level 

bottlenecks in streaming graph applications

Extensible: The API of SAGA-Bench is general enough to accommodate 

future software techniques



Scalable and Energy-efficient Architecture Lab (SEAL)

SAGA-Bench Contents
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Data Structures (all support multithreading):

• Stinger 

• Degree-Aware Hashing (DAH)

• Adjacency List (shared-style multithreading) (AS)

• Adjacency List (chunked-style multithreading) (AC)

Compute Models:

• Breadth First Search (BFS)

• Connected Components (CC)

• Max Computation (MC)

• PageRank (PR)

• Single Source Shortest Path (SSSP)

• Single Source Widest Path (SSWP)

• Incremental

• From scratch

Implemented Algs (all support multithreading):

4 data structures + 6 x 2 algorithms
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Data Structures
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Shared adjacency list (AS) 
Chunked adjacency list (AC) 

Stinger

Degree-Aware Hashing (DAH)
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Compute Models
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Update new edges 

Reset vertex properties to 

initial values 

Perform algorithm

Update new edges 

Reset vertex properties to 

initial values 

Perform algorithm

Update new edges 

Reset vertex properties to 

initial values 

Perform algorithm

Update new edges 

Reuse old computed vertex values 

from previous batch + compute 

starting from affected vertices 

Perform algorithm

ti
m

e
Recomputation From scratch (FS) Incremental Computation (INC)

Batch 0

Batch 1
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Section III 
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Software-level characterization of different data structures and compute models 
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Experimental Setup 
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Methodology

• Shuffle datasets and stream batches of 

500K edges

• Three representative data points P1, P2, 

P3 for early, middle, and final stages

• Averages with 95% confidence intervals

Platform

• Intel Xeon Gold 6142 (Skylake) server 

• Dual-socket, 64 total HW execution threads

• 32KB private L1, 1MB private L2, 22MB shared LLC

• 768GB DRAM, 128GB/s memory BW per socket

• 136.2 GB/s inter-socket communication

Datasets
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Software Profiling Overview 

• Which data structure is the best?

• Which compute model is the best?

• What proportions of the batch processing latency do update and 

compute phases occupy?
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Best Data Structure depends on 

Per-Batch Degree Distribution of the Graph
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worst best

LJ, Orkut, RMAT:    DAH > AC > Stinger > AS 

Wiki, Talk:                 AS > AC > Stinger > DAH

Per-batch degree distribution of LJ, Orkut, RMAT is short-tailed (low imbalance). 

Per-batch degree distribution of Wiki, Talk is heavy-tailed (high imbalance).
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Larger Graphs Benefit More from 

Incremental Compute Model
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In general, RMAT, the largest dataset, benefits the most from incremental compute model 
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Batch Processing Latency Breakdown
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Update phase is non-trivial in streaming graph analytics. 

More than 40% latency comes from update phase in many cases.
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Section IV 
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Architecture-level characterization of graph update and graph compute phases

• Compute Model: Incremental 

• Data structure: Adjacency List (AS) for LJ, Orkut, Rmat (STail)

Degree-Aware Hashing (DAH) for Wiki, Talk (HTail) 

• Profiling tool: Intel Processor Counter Monitor (PCM)
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Architecture Profiling Overview 

• How do update and compute phases utilize different architecture 

resources?

• What influences the architecture resource utilization of the update 

phase? 

23
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Update Phase Shows Lower Utilization of Resources 
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Core scaling Memory BW utilization

STail HTail

Update: good scalability up to ~8-12 cores

Compute: good scalability up to ~20 cores

Update uses lower memory 

BW than Compute
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Structure of Graph’s Batches Influences Resource 

Utilization of Update Phase
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Core scaling Memory BW utilization

STail HTail

HTail Update: poor scalability beyond 

4-8 cores

STail Update: 13-32GB/s

HTail Update: ~5GB/s
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Conclusions
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• Streaming graph analytics is important in many application domains and 

possesses unique challenges. However, there is a lack of systematic 

software and hardware studies. 

• Contribution 1: SAGA-Bench, an open-source benchmark.

• Contribution 2: Systematic software characterization to provide insights 

on the best data structure, best compute model, and latency breakdown.

• Contribution 3: Architecture-level characterization to study how the 

update and compute phases utilize different architecture resources.


