Scalable and Energy-efficient Architecture Lab (SEAL)

SAGA-Bench: Software and Hardware
Characterization of StreAming Graph
Analytics Workloads

Abanti Basak, Jilan Lin, Ryan Lorica, Xinfeng Xie,
Zeshan Chishti*, Alaa Alameldeen*, and Yuan Xie

University of California, Santa Barbara
*Intel

= ®
UC Santa Barbara I n tE| )
7 Scalable Energy-efficient
B E Architecture Lab



Scalable and Energy-efficient Architecture Lab (SEAL)

Executive Summary

Streaming graph analytics and its unique challenges

SAGA-Bench: an open-source benchmark for streaming graphs
Software-level characterization of different data structures and compute models

Architecture-level characterization of graph update and graph compute phases
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Section |

Streaming graph analytics and its unique challenges
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Financial fraud detection Recommender systems Social Network Analysis
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Streaming Graph Analytics Overview

Streaming Graph Analytics System
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Difference Between Static and Streaming Graphs

Update Update Update
Batch 0 Batch 1 Batch 2

>

>

(a) time

STATIC

b) time
STREAMING

d Build graph once, compute again
and again

1 Optimization goal: execution time
of compute phase

 Graph update is a fixed one-time
overhead

 Repeated update and compute on
batches of incoming edges

1 Optimization goal: real-timeliness,
l.e., low batch processing latency

 Graph update lies on the critical
path
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Shortcomings of Prior Software Work

Aspen (PLDI 2019)
GraphOne (USENIX FAST 2019)

Stinger (HPEC 2012)

KickStarter (ASPLOS 2017)

Kineograph (EuroSys 2012)

GraPU (SoCC 2018)

Degree-Aware Hashing (IPDPSW 2016)

GraphTinker (IPDPS 2019)

Multiple stand-alone streaming
graph systems but lack of
systematic study of the software
techniques (data structures and
compute models) proposed
across these systems
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Shortcomings of Prior Architecture Work

Graphicionado (MICRO 2016)
HATS (MICRO 2018)

GraphP (HPCA 2018)
Tesseract (ISCA 2015)
PHI (MICRO 2019)

Droplet (HPCA 2019)

GraphQ (MICRO 2019)

Multiple papers on static graph
computation but streaming graphs remain
unexplored at architecture level due to:

* Immature software techniques

« Lack of open-source benchmarks
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This Work

Creates SAGA-Bench, an open-source benchmark, and
performs systematic software and hardware
characterization of streaming graph analytics workloads
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Section I

SAGA-Bench: an open-source benchmark for streaming graphs
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SAGA-Bench Overview

Benchmark in C++ which puts together different data structures and
compute models for streaming graph analytics on the same platform
for systematic characterization

GitHub repo: https://github.com/abasak24/SAGA-Bench
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Scope of SAGA-Bench

Software Studies: Common platform for performance analysis of software
technigues such as different data structures and compute models

Architecture-level studies: Open source tool for studying architecture-level
bottlenecks in streaming graph applications

Extensible: The APl of SAGA-Bench is general enough to accommodate
future software technigues
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Compute Models: Implemented Algs (all support multithreading):
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SAGA-Bench Contents

Data Structures (all support multithreading):

Stinger

Degree-Aware Hashing (DAH)

Adjacency List (shared-style multithreading) (AS)
Adjacency List (chunked-style multithreading) (AC)

Breadth First Search (BFS)
» Connected Components (CC)
Max Computation (MC)
Incremental PageRank (PR)
From scratch Single Source Shortest Path (SSSP)
Single Source Widest Path (SSWP)

4 data structures + 6 x 2 algorithms
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Data Structures
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Compute Models

Recomputation From scratch (FS)

time

Update new edges

Reset vertex properties to
initial values

Perform algorithm

Update new edges

Reset vertex properties to
initial values

Perform algorithm

Batch O

Incremental Computation (INC)

Update new edges

Reset vertex properties to
initial values

Perform algorithm

Update new edges

Reuse old computed vertex values
from previous batch + compute
starting from affected vertices

Perform algorithm
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Section Il

Software-level characterization of different data structures and compute models
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Experimental Setup

Platform
Intel Xeon Gold 6142 (Skylake) server

Dual-socket, 64 total HW execution threads

32KB private L1, 1MB private L2, 22MB shared LLC
768GB DRAM, 128GB/s memory BW per socket

136.2 GB/s inter-socket communication

Methodology

Shuffle datasets and stream batches of
500K edges

Three representative data points P1, P2,
P3 for early, middle, and final stages

Averages with 95% confidence intervals

Datasets
Dataset vertices edges batchCount
Livejournal (L]) 4,847 571 68,993,773 138
Orkut 3,072,441 117,185,083 235
EMAT 32,118,308 ( 500,000,000 1000
wiki-topcats (Wiki) 1,791,489 28,511,807 58
wiki-talk (Talk) 2,394 385 5,021,410 11
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Software Profiling Overview

 Which data structure is the best?
* Which compute model is the best?

* What proportions of the batch processing latency do update and
compute phases occupy?
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batch processing latency
normalized to AS
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Best Data Structure depends on

Per-Batch Degree Distribution of the Graph

] ACIAS 7] DAH/AS [ stinger/AS |,
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LJ, Orkut, RMAT: DAH >AC > Stinger > AS

Wiki, Talk:

Per-batch degree distribution of LJ, Orkut, RMAT is short-tailed (low imbalance).

AS > AC > Stinger > DAH

| SSSP

|
! (INC for Orkut, RMAT)

SSWP

(FS for Wiki)

3 IEESIIEEFIILE S
g > " & - 58 °*% "
Entire Dataset One Batch
Dataset
Max In-degree | Max Out-degree | Max In-degree | Max Out-degree
L] 139046 20293 10k 147
Orkut 33313 33313 144 144
BMAT E016 7997 1o 10
Wiki 238040 3907 4174 70
Talk 3311 100422 330 9957

Per-batch degree distribution of Wiki, Talk is heavy-tailed (high imbalance).
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Batch Processing Latency Breakdown
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Update phase is non-trivial in streaming graph analytics.
More than 40% latency comes from update phase in many cases.
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Section |V

Architecture-level characterization of graph update and graph compute phases

« Compute Model: Incremental

« Data structure: Adjacency List (AS) for LJ, Orkut, Rmat (STai |)
Degree-Aware Hashing (DAH) for Wiki, Talk (HTall)

« Profiling tool: Intel Processor Counter Monitor (PCM)
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Architecture Profiling Overview

 How do update and compute phases utilize different architecture
resources?

* What influences the architecture resource utilization of the update
phase?
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Update Phase Shows Lower Utilization of Resources

0. Core scaling Memory BW utilization
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Update: good scalability up to ~8-12 cores Update uses lower memory
Compute: good scalability up to ~20 cores BW than Compute
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Structure of Graph’s Batches Influences Resource
Utilization of Update Phase

Core scaling Memory BW utilization
10 1
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Conclusions

Streaming graph analytics is important in many application domains and
possesses unigue challenges. However, there is a lack of systematic
software and hardware studies.

Contribution 1: SAGA-Bench, an open-source benchmark.

Contribution 2: Systematic software characterization to provide insights
on the best data structure, best compute model, and latency breakdown.

Contribution 3: Architecture-level characterization to study how the
update and compute phases utilize different architecture resources.
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