
Scalable and Energy-efficient Architecture Lab (SEAL)

SAGA-Bench: Software and Hardware

Characterization of StreAming Graph

Analytics Workloads

Abanti Basak, Jilan Lin, Ryan Lorica, Xinfeng Xie,

Zeshan Chishti*, Alaa Alameldeen*, and Yuan Xie

University of California, Santa Barbara

*Intel

Scalable and Energy-efficient Architecture Lab (SEAL)

Executive Summary

2

Streaming graph analytics and its unique challenges

SAGA-Bench: an open-source benchmark for streaming graphs

Software-level characterization of different data structures and compute models

Architecture-level characterization of graph update and graph compute phases

Scalable and Energy-efficient Architecture Lab (SEAL)

Section I

3

Streaming graph analytics and its unique challenges

Scalable and Energy-efficient Architecture Lab (SEAL)

Application Domains of Streaming Graphs

4

Financial fraud detection Recommender systems Social Network Analysis

Scalable and Energy-efficient Architecture Lab (SEAL)

Streaming Graph Analytics Overview

5

Scalable and Energy-efficient Architecture Lab (SEAL)

Difference Between Static and Streaming Graphs

6

STATIC STREAMING

❑ Build graph once, compute again

and again

❑ Optimization goal: execution time

of compute phase

❑ Graph update is a fixed one-time

overhead

❑ Repeated update and compute on

batches of incoming edges

❑Optimization goal: real-timeliness,

i.e., low batch processing latency

❑ Graph update lies on the critical

path

Scalable and Energy-efficient Architecture Lab (SEAL)

Shortcomings of Prior Software Work

7

Aspen (PLDI 2019)

Stinger (HPEC 2012)

Kineograph (EuroSys 2012)

GraphOne (USENIX FAST 2019)

KickStarter (ASPLOS 2017)

Degree-Aware Hashing (IPDPSW 2016)

GraphTinker (IPDPS 2019)

GraPU (SoCC 2018)

Multiple stand-alone streaming

graph systems but lack of

systematic study of the software

techniques (data structures and

compute models) proposed

across these systems

Scalable and Energy-efficient Architecture Lab (SEAL)

Shortcomings of Prior Architecture Work

8

Multiple papers on static graph

computation but streaming graphs remain

unexplored at architecture level due to:

• Immature software techniques

• Lack of open-source benchmarks

Graphicionado (MICRO 2016)

GraphP (HPCA 2018)

HATS (MICRO 2018)

Tesseract (ISCA 2015)

PHI (MICRO 2019)

Droplet (HPCA 2019)

GraphQ (MICRO 2019)

Scalable and Energy-efficient Architecture Lab (SEAL)

This Work

9

Creates SAGA-Bench, an open-source benchmark, and

performs systematic software and hardware

characterization of streaming graph analytics workloads

Scalable and Energy-efficient Architecture Lab (SEAL)

Section II

10

SAGA-Bench: an open-source benchmark for streaming graphs

Scalable and Energy-efficient Architecture Lab (SEAL)

SAGA-Bench Overview

11

Benchmark in C++ which puts together different data structures and

compute models for streaming graph analytics on the same platform

for systematic characterization

GitHub repo: https://github.com/abasak24/SAGA-Bench

https://github.com/abasak24/SAGA-Bench

Scalable and Energy-efficient Architecture Lab (SEAL)

Scope of SAGA-Bench

12

Software Studies: Common platform for performance analysis of software

techniques such as different data structures and compute models

Architecture-level studies: Open source tool for studying architecture-level

bottlenecks in streaming graph applications

Extensible: The API of SAGA-Bench is general enough to accommodate

future software techniques

Scalable and Energy-efficient Architecture Lab (SEAL)

SAGA-Bench Contents

13

Data Structures (all support multithreading):

• Stinger

• Degree-Aware Hashing (DAH)

• Adjacency List (shared-style multithreading) (AS)

• Adjacency List (chunked-style multithreading) (AC)

Compute Models:

• Breadth First Search (BFS)

• Connected Components (CC)

• Max Computation (MC)

• PageRank (PR)

• Single Source Shortest Path (SSSP)

• Single Source Widest Path (SSWP)

• Incremental

• From scratch

Implemented Algs (all support multithreading):

4 data structures + 6 x 2 algorithms

Scalable and Energy-efficient Architecture Lab (SEAL)

Data Structures

14

Shared adjacency list (AS)
Chunked adjacency list (AC)

Stinger

Degree-Aware Hashing (DAH)

Scalable and Energy-efficient Architecture Lab (SEAL)

Compute Models

15

Update new edges

Reset vertex properties to

initial values

Perform algorithm

Update new edges

Reset vertex properties to

initial values

Perform algorithm

Update new edges

Reset vertex properties to

initial values

Perform algorithm

Update new edges

Reuse old computed vertex values

from previous batch + compute

starting from affected vertices

Perform algorithm

ti
m

e
Recomputation From scratch (FS) Incremental Computation (INC)

Batch 0

Batch 1

Scalable and Energy-efficient Architecture Lab (SEAL)

Section III

16

Software-level characterization of different data structures and compute models

Scalable and Energy-efficient Architecture Lab (SEAL)

Experimental Setup

17

Methodology

• Shuffle datasets and stream batches of

500K edges

• Three representative data points P1, P2,

P3 for early, middle, and final stages

• Averages with 95% confidence intervals

Platform

• Intel Xeon Gold 6142 (Skylake) server

• Dual-socket, 64 total HW execution threads

• 32KB private L1, 1MB private L2, 22MB shared LLC

• 768GB DRAM, 128GB/s memory BW per socket

• 136.2 GB/s inter-socket communication

Datasets

Scalable and Energy-efficient Architecture Lab (SEAL)

Software Profiling Overview

• Which data structure is the best?

• Which compute model is the best?

• What proportions of the batch processing latency do update and

compute phases occupy?

18

Scalable and Energy-efficient Architecture Lab (SEAL)

Best Data Structure depends on

Per-Batch Degree Distribution of the Graph

19

worst best

LJ, Orkut, RMAT: DAH > AC > Stinger > AS

Wiki, Talk: AS > AC > Stinger > DAH

Per-batch degree distribution of LJ, Orkut, RMAT is short-tailed (low imbalance).

Per-batch degree distribution of Wiki, Talk is heavy-tailed (high imbalance).

Scalable and Energy-efficient Architecture Lab (SEAL)

Larger Graphs Benefit More from

Incremental Compute Model

20

In general, RMAT, the largest dataset, benefits the most from incremental compute model

Scalable and Energy-efficient Architecture Lab (SEAL)

Batch Processing Latency Breakdown

21

Update phase is non-trivial in streaming graph analytics.

More than 40% latency comes from update phase in many cases.

Scalable and Energy-efficient Architecture Lab (SEAL)

Section IV

22

Architecture-level characterization of graph update and graph compute phases

• Compute Model: Incremental

• Data structure: Adjacency List (AS) for LJ, Orkut, Rmat (STail)

Degree-Aware Hashing (DAH) for Wiki, Talk (HTail)

• Profiling tool: Intel Processor Counter Monitor (PCM)

Scalable and Energy-efficient Architecture Lab (SEAL)

Architecture Profiling Overview

• How do update and compute phases utilize different architecture

resources?

• What influences the architecture resource utilization of the update

phase?

23

Scalable and Energy-efficient Architecture Lab (SEAL)

Update Phase Shows Lower Utilization of Resources

24

Core scaling Memory BW utilization

STail HTail

Update: good scalability up to ~8-12 cores

Compute: good scalability up to ~20 cores

Update uses lower memory

BW than Compute

Scalable and Energy-efficient Architecture Lab (SEAL)

Structure of Graph’s Batches Influences Resource

Utilization of Update Phase

25

Core scaling Memory BW utilization

STail HTail

HTail Update: poor scalability beyond

4-8 cores

STail Update: 13-32GB/s

HTail Update: ~5GB/s

Scalable and Energy-efficient Architecture Lab (SEAL)

Conclusions

26

• Streaming graph analytics is important in many application domains and

possesses unique challenges. However, there is a lack of systematic

software and hardware studies.

• Contribution 1: SAGA-Bench, an open-source benchmark.

• Contribution 2: Systematic software characterization to provide insights

on the best data structure, best compute model, and latency breakdown.

• Contribution 3: Architecture-level characterization to study how the

update and compute phases utilize different architecture resources.

